总机:025-58361106-801
传真:025-58361107-806
Email:info@zhenghongjinshu.com
地址:南京市化学工业园区方水路158号三楼
双特异性抗体研发进展
来源:药物分析杂志 2019, Vol. 39 Issue (1): 78-85. DOI: 10.16155/j.0254-1793.2019.01.10
, ,
双特异性抗体研发进展
药物分析杂志 2019, Vol. 39 Issue (1): 78-85. DOI: 10.16155/j.0254-1793.2019.01.10
参考文献
[1] |
COLOMA MJ, MORRISON SL. Design and production of novel tetravalent bispecific antibodies[J]. Nat Biotechnol, 1997, 15(2): 159.
|
[2] |
CHAN AC, CARTER PJ. Therapeutic antibodies for autoimmunity and inflammation[J]. Nat Rev Immunol, 2010, 10(5): 301.
|
[3] |
KONTERMANN RE. Dual targeting strategies with bispecific antibodies[J]. MAbs, 2012, 4(2): 182.
|
[4] |
BYRNE H, CONROY PJ, WHISSTOCK JC, et al. A tale of two specificities:bispecific antibodies for therapeutic and diagnostic applications[J]. Trends Biotechnol, 2013, 31(11): 621.
|
[5] |
JOST C, PLUCKTHUN A. Engineered proteins with desired specificity:DARPins, other alternative scaffolds and bispecific IgGs[J]. Curr Opin Struct Biol, 2014, 27: 102.
|
[6] |
RIDGWAY JB, PRESTA LG, CARTER P. 'Knobs-into-holes' engineering of antibody CH3 domains for heavy chain heterodimerization[J]. Protein Eng, 1996, 9(7): 617.
|
[7] |
YAN L, BECKMAN R. Pharmacogenetics and pharmacogenomics in oncology therapeutic antibody development[J]. Biotechniques, 2005, 39(10 Suppl): S565.
|
[8] |
GUNASEKARAN K, PENTONY M, SHEN M, et al. Enhancing antibody Fc heterodimer formation through electrostatic steering effects:applications to bispecific molecules and monovalent IgG[J]. J Biol Chem, 2010, 285(25): 19637.
|
[9] |
MOORE GL, BAUTISTA C, PONG E, et al. A novel bispecific antibody format enables simultaneous bivalent and monovalent co-engagement of distinct target antigens[J]. mAbs, 2011, 3(6): 546.
|
[10] |
DAVIS JH, APERLO C, LI Y, et al. SEED bodies:fusion proteins based on strand-exchange engineered domain (SEED)CH3 heterodimers in an Fc analogue platform for asymmetric binders or immunofusions and bispecific antibodies[J]. Protein Eng Des Sel, 2010, 23(4): 195.
|
[11] |
ZHU Z, PRESTA LG, ZAPATA G, et al. Remodeling domain interfaces to enhance heterodimer formation[J].
|
[12] |
IGAWA T, TSUNODA H, KIKUCHI Y, et al. VH/VL interface engineering to promote selective expression and inhibit conformational isomerization of thrombopoietin receptor agonist single-chain diabody[J]. Protein Eng Des Sel, 2010, 23(8): 667.
|
[13] |
SCHAEFER W, REGULA JT, BAHNER M, et al. Immunoglobulin domain crossover as a generic approach for the production of bispecific IgG antibodies[J]. Proc Natl Acad Sci USA, 2011, 108(27): 11187.
|
[14] |
YAN L, BECKMAN RA. Pharmacogenetics and pharmacogenomics in oncology therapeutic antibody development[J]. Biotechniques, 2005, 39(4): 565.
|
[15] |
STAERZ UD, BEVAN MJ. Hybrid hybridoma producing a bispecific monoclonal antibody that can focus effector T-cell activity[J]. Proc Natl Acad Sci USA, 1986, 83(5): 1453.
|
[16] |
ZEIDLER R, REISBACH G, WOLLENBERG B, et al. Simultaneous activation of T cells and accessory cells by a new class of intact bispecific antibody results in efficient tumor cell killing[J].
|
[17] |
CARTER P. Bispecific human IgG by design[J]. J Immunol Methods, 2001, 248(1-2): 7.
|
[18] |
MUDA M, GROSS AW, DAWSON JP, et al. Therapeutic assessment of SEED:a new engineered antibody platform designed to generate mono-and bispecific antibodies[J]. Protein Eng Des Sel, 2011, 24(5): 447.
|
[19] |
WRANIK BJ, CHRISTENSEN EL, SCHAEFER G, et al. LUZ-Y, a novel platform for the mammalian cell production of full-length IgG-bispecific antibodies[J]. J Biol Chem, 2012, 287(52): 43331.
|
[20] |
JACKMAN J, CHEN Y, HUANG A, et al. Development of a two-part strategy to identify a therapeutic human bispecific antibody that inhibits IgE receptor signaling[J]. J Biol Chem, 2010, 285(27): 20850.
|
[21] |
LAFLEUR DW, ABRAMYAN D, KANAKARAJ P, et al. Monoclonal antibody therapeutics with up to five specificities:functional enhancement through fusion of target-specific peptides[J]. MAbs, 2013, 5(2): 208.
|
[22] |
JAKOB CG, EDALJI R, JUDGE RA, et al. Structure reveals function of the dual variable domain immunoglobulin (DVD-Ig)molecule[J]. MAbs, 2013, 5(3): 358.
|
[23] |
WU C, YING H, GRINNELL C, et al. Simultaneous targeting of multiple disease mediators by a dual-variable-domain immunoglobulin[J]. Nat Biotechnol, 2007, 25(11): 1290.
|
[24] |
STORK R, MULLER D, KONTERMANN RE. A novel tri-functional antibody fusion protein with improved pharmacokinetic properties generated by fusing a bispecificsingle-chain diabody with an albumin-binding domain from streptococcal protein G[J]. Protein Eng Des Sel, 2007, 20(11): 569.
|
[25] |
TAN PH, SANDMAIER BM, STAYTON PS. Contributions of a highly conserved VH/VL hydrogen bonding interaction to scFv folding stability and refolding efficiency[J]. Biophys J, 1998, 75(3): 1473.
|
[26] |
PERCHIACCA JM, TESSIER PM. Engineering aggregation-resistant antibodies[J]. Annu Rev Chem Biomol Eng, 2012, 3: 263.
|
[27] |
WOLF E, HOFMEISTER R, KUFER P, et al. BiTEs:bispecific antibody constructs with unique anti-tumor activity[J]. Drug Discov Today, 2005, 10(18): 1237.
|
[28] |
MULLER D, KARLE A, MEISSBURGER B, et al. Improved pharmacokinetics of recombinant bispecific antibody molecules by fusion to human serum albumin[J]. J Biol Chem, 2007, 282(17): 12650.
|
[29] |
OATES J, JAKOBSEN BK. ImmTACs:novel bi-specific agents for targeted cancer therapy[J]. Oncoimmunology, 2013, 2(2): e22891.
|
[30] |
DOPPALAPUDI VR, HUANG J, LIU D, et al. Chemical generation of bispecific antibodies[J]. Proc Natl Acad Sci USA, 2010, 107(52): 22611.
|
[31] |
SPIESS C, ZHAI Q, CARTER PJ. Alternative molecular formats and therapeutic applications for bispecific antibodies[J].
|
[32] |
FAN D, LI Z, ZHANG X, et al. AntiCD3Fv fused to human interleukin-3 deletion variant redirected T cells against human acute myeloid leukemic stem cells[J]. J Hematol Oncol, 2015, 8: 18.
|
[33] |
ZUGMAIER G, KLINGER M, SCHMIDT M, et al. Clinical overview of anti-CD19 BiTE((R))and ex vivo data from anti-CD33 BiTE((R))as examples for retargeting T cells in hematologic malignancies[J].
|
[34] |
KONTERMANN RE, BRINKMANN U. Bispecific antibodies[J]. Drug Discov Today, 2015, 20(7): 838.
|
[35] |
MCDONAGH CF, HUHALOV A, HARMS BD, et al. Antitumor activity of a novel bispecific antibody that targets the ErbB2/ErbB3 oncogenic unit and inhibits heregulin-induced activation of ErbB3[J]. Mol Cancer Ther, 2012, 11(3): 582.
|
[36] |
FITZGERALD JB, JOHNSON BW, BAUM J, et al. MM-141, an IGF-IR-and ErbB3-directed bispecific antibody, overcomes network adaptations that limit activity of IGF-IR inhibitors[J]. Mol Cancer Ther, 2014, 13(2): 410.
|
[37] |
HILL AG, FINDLAY MP, BURGE ME, et al. Phase Ⅱ study of the dual EGFR/HER3 inhibitor duligotuzumab (MEHD7945A)versus cetuximab in combination with FOLFIRI in second-line RAS wild-type metastatic colorectal cancer[J]. Clin Cancer Res, 2018, 24(10): 2276.
|
[38] |
KIENAST Y, KLEIN C, SCHEUER W, et al. Ang-2-VEGF-A Cross Mab, a novel bispecific human IgG1 antibody blocking VEGF-A and Ang-2 functions simultaneously, mediates potent antitumor, antiangiogenic, and antimetastatic efficacy[J]. Clin Cancer Res, 2013, 19(24): 6730.
|
[39] |
WILLIAMS SC. Small nanobody drugs win big backing from pharma[J]. Nat Med, 2013, 19(11): 1355.
|
[40] |
KINGWELL K. InterMune and Boehringer blaze trails for idiopathic pulmonary fibrosis drugs[J]. Nat Rev Drug Discov, 2014, 13(7): 483.
双特异性抗体研发进展 药物分析杂志 2019, Vol. 39 Issue (1): 78-85. DOI: 10.16155/j.0254-1793.2019.01.10 |